
Viscoelastic phase separation in shear flow

Tatsuhiro Imaeda,1 Akira Furukawa,2 and Akira Onuki2
1Aichi Gakusen University, Toyota 471-8532, Japan

2Department of Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 9 September 2003; revised manuscript received 24 May 2004; published 18 November 2004)

We numerically investigate viscoelastic phase separation in polymer solutions under shear using a time-
dependent Ginzburg-Landau model. The gross variables in our model are the polymer volume fraction and a
conformation tensor. The latter represents chain deformations and relaxes slowly on the rheological time giving
rise to a large viscoelastic stress. The polymer and the solvent obey two-fluid dynamics in which the viscoelas-
tic stress acts asymmetrically on the polymer and, as a result, the stress and the diffusion are dynamically
coupled. Below the coexistence curve, interfaces appear with increasing the quench depth and the solvent
regions act as a lubricant. In these cases the composition heterogeneity causes more enhanced viscoelastic
heterogeneity and the macroscopic stress is decreased at fixed applied shear rate. We find steady two-phase
states composed of the polymer-rich and solvent-rich regions, where the characteristic domain size is inversely
proportional to the average shear stress for various shear rates. The deviatoric stress components exhibit large
temporal fluctuations. The normal stress difference can take negative values transiently at weak shear.
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I. INTRODUCTION

In phase-separating polymer systems, domain morpholo-
gies are influenced by a number of factors, including the
molecular weights, the composition, closeness to the critical
point, and viscoelasticity[1,2]. Particularly when the two
components have distinctly different viscoelastic properties
as in semidilute polymer solutions and polymer blends of
long and short chains, unique interplays emerge between vis-
coelasticity and thermodynamic instability. In such asymmet-
ric systems, salient effects observed in experiments are as
follows. First, in early-stage spinodal decomposition, the ki-
netic coefficientLsqd depends on the wave numberq as
Lsqd /Ls0d,sjveqd−2 for q larger than the inverse of a vis-
coelastic lengthjve [3,4], wherejve can be much longer than
the gyration radius[5]. Second, in late-stage spinodal de-
composition, spongelike network structures appear tran-
siently in the asymmetric case[6,7]. The physical origin of
these effects is now ascribed to the stress-diffusion coupling
in viscoelastic binary mixtures[5]. This coupling is predicted
to give rise to various effects including nonexponential decay
in dynamic light scattering[2,5] and shear-induced fluctua-
tion enhancement. In the case of spinodal decomposition, the
consequences of the dynamic coupling were studied analyti-
cally in the linear growth regime[8] and numerically in the
late-stage coarsening[9–11].

Flow effects on phase separation in polymeric systems are
even more dramatic[1,12,13]. In this paper, we consider a
simple shear flow with mean velocity profile

kvl = ġyex, s1.1d

where the flow is in thex direction,ex being the unit vector
along thex axis, and the mean velocity gradientġ is in they
direction. Application of shear or extensional flow to vis-
coelastic systems in one-phase states sometimes induces a
strong increase of the turbidity, indicating shear-induced
composition heterogeneities or demixing. This is in marked

contrast to shear-induced homogenization or mixing ob-
served in near-critical fluids[14,15] and in ternary polymer
mixtures [16,17]. In systems exhibiting shear-induced mix-
ing, the entanglement effects are not severe and the hydro-
dynamic interaction is suppressed by shear[2,13]. In semi-
dilute polymer solutions near the coexistence curve with
high molecular weightssM *23106d, recent scattering ex-
periments have most unambiguously detected shear-induced
demixing [18–25]. Rheological effects in sheared polymer
solutions are also conspicuous, which include large stress
fluctuations upon demixing by shear[26,27] and a second
overshoot in the shear stress as a function of time after ap-
plication of shear[20,28]. Here microscope pictures of com-
position heterogeneities in polymer solutions and asymmet-
ric polymer blends under shear are informative[29,30].

Theoretically, for sheared polymer solutions, the rel-
evance of the dynamical coupling was first pointed out by
Helfand and Fredrickson[31]. Some linear calculations for
small fluctuations were also performed in Ginzburg-Landau
schemes, where a conformation tensor represents the chain
deformations[32–35]. Numerical analysis(still in two di-
mensions) using such schemes gave insights into the nonlin-
ear shear effects[13,36–39]. That is, slightly above the co-
existence curve, composition heterogeneitiesdf on
mesoscopic spatial scales emerge with increasingġ. The am-
plitude of df can even be of the order of the averagekfl,
while there are no clear interfaces. If this takes place, the
system becomes turbid, resulting in shear-inducedphase
separation or demixingobserved above the coexistence
curve. We remark that similar Ginzburg-Landau models
[40,41] have been used to analyze shear-banding effects in
wormlike micellar systems[42–44].

In entangled polymers, the rheological relaxation timet
can be very long[45], so experiments in the Newtonian and
non-Newtonian regimes are both possible, where the Debo-
rach numberDe= ġt is larger or smaller than 1, respectively.
In semidilute solutions, the strong composition dependence
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of the solution viscosityh=hsfd can lead to shear-induced
fluctuation enhancement for weak shearġt!1 [31], while
the normal stress effect comes into play in the non-
Newtonian regimeġt*1 [2,21,32].

Without viscoelasticity, a number of groups have per-
formed simulations of phase separation in sheared simple
fluids [46,47]. However, simulations have still been rare for
sheared viscoelastic fluids[13,36–39]. In this paper, we will
examine nonlinear dynamic regimes of sheared polymer so-
lutions in theta solvent below the coexistence curve. Both in
simple and polymeric fluids, if the system is quenched below
the coexistence curve under shear, the domain growth is
eventually stopped and dynamically steady states are real-
ized. For Newtonian fluids, dynamics in sheared two-phase
states have long been studied[2,17,48,49], but for viscoelas-
tic fluids such nonequilibrium effects remain almost unex-
plored.

The organization of this paper is as follows. In Sec. II, we
will explain our theoretical scheme. In Sec. III, we will
present our numerical results in two dimensions below the
coexistence curve for various shear rates and polymer vol-
ume fractions. Section IV summarizes new results and gives
some predictions.

II. THEORETICAL BACKGROUND

In this section, we briefly survey our theoretical frame-
work to discuss viscoelastic phase separation under the shear
flow (1.1). The gross variables in our model are the polymer

volume fractionf and a conformation tensorWJ . The latter
represents chain deformations and relaxes slowly on the
rheological time giving rise to a large viscoelastic stress. In
Sec. II A we first present the viscoelastic Ginzburg-Landau
free energy, and then in Sec. II B the dynamic model is
given. The rheological properties of our dynamic equations
are also discussed in Sec. II C. See Refs.[2,13] for the de-
tails of our theoretical framework.

A. Viscoelastic Ginzburg-Landau free energy

Phase behavior of polymer solutions near the coexistence
curve is usually described in terms of the Flory-Huggins
(FH) free energy density for the polymer volume fractionf
assumed to be much smaller than 1[45],

fFH =
kBT

v0
Ff

N
ln f + S1

2
− xDf2 +

1

6
f3G , s2.1d

wherev0 is the volume of a monomer(=a3 with a being the
monomer size in three dimensions) and x is the interaction
parameter dependent on the temperatureT (being equal to
1/2 at the theta condition). At the critical point we havef
=fc=N−1/2 andN1/2s1−2xd=−2. In the following, it is con-
venient to scalef and 2x−1 as

F = f/fc, u = N1/2s2x − 1d. s2.2d

In Fig. 1, we show the phase diagram in the plane off /fc
and N1/2s1−2xd=−u. The spinodal curve in Fig. 1 is ob-
tained froms]2fFH/]f2dT=0 and is written asu=F+F−1.

To describe the viscoelastic effects on the composition
inhomogeneities, it is convenient to introduce a tensor dy-

namic variableWJ =hWijj, which is a symmetric tensor repre-
senting chain conformations undergoing deformations
[32–34,50,51]. As shown in the following, the deviation
dWij =Wij −di j gives rises to a network stress.

The Ginzburg-Landau free energy functional due to the

fluctuations off andWJ is written as

F =E drF fFH +
1

2
Cu = fu2 +

1

4
GQsWJ dG . s2.3d

The coefficientC of the gradient term is calculated in the
random-phase approximation[45] in the semidilute regime
as

C = skBT/18v0da2/f. s2.4d

We shall see thatG has the meaning of the shear modulus for
small deformations changing rapidly compared with the
rheological relaxation timet. It is assumed to be of the scal-
ing form

G = skBT/v0dgfa, s2.5d

where g is an important dimensionless parameter in our
simulations, and is of order 1 in theta solvent[2,13]. Al-
though experiments indicateda>2.25 [52,53], we will set

a=3 for simplicity. The simplest form forQsWJ d is given by

QsWJ d = o
i j

sdWijd2. s2.6d

B. Dynamic equations

We next present the dynamic equations assuming the two-
fluid dynamics for the polymer and the solvent with the ve-
locities, vp and vs, respectively, including the new variable

WJ [32–34,40]. These equations may be treated as Langevin

FIG. 1. Coexistence curve(solid line) and spinodal curve
(dashed line) for polymer solutions obtained from Eq.(2.1) in the
plane of −u=N1/2s1−2xd and F=f /fc. The points(3) represent
the initial states of our simulations.
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equations with thermal noise terms, but we will neglect the
noise terms hereafter. Formal frameworks for viscoelastic
fluids have also been discussed in the literature[50,51].

We assume that the mass densities of pure polymer and
solvent are the same. Then the polymer mass fractionrp/r
coincides withf. It obeys

]

]t
f = − = · sfvpd = − = · sfvd − = · ffs1 − fdwg,

s2.7d

where

w = vp − vs s2.8d

is the relative velocity between polymer and solvent. The
mean velocityv is defined by

v = fvp + s1 − fdvs. s2.9d

The two velocitiesvp and vs are expressed asvp=v+s1
−fdw andvs=v−fw. For simplicity, we assume the incom-
pressibility condition for the average velocity,

¹ ·v = 0. s2.10d

On the other hand,= ·w is nonvanishing in general and gives
rise to diffusion in Eq.(2.7) for small deviations around
equilibrium.

BecauseWJ represents the network deformation, its motion
is determined by the polymer velocityvp and its simplest
dynamic equation is of the form

F ]

]t
+ vp · = GWij − o

k

sDikWkj + WikDjkd = −
1

t*
dWij ,

s2.11d

whereDij =]vpi /]xj is the gradient of the polymer velocity.
The left-hand side of Eq.(2.11) is called the upper convec-
tive time derivative in the rheological literature[54], which
keeps the frame invariance of the tensor properties ofWij . In
Eq. (2.21) below, we will assume that the relaxation timet*
on the right-hand side depends ondWij as well asf. The
usual rheological relaxation timet is obtained in the New-
tonian limit,

t = lim
dWJ→0

t * . s2.12d

In the problem of shear-banding flow, some authors replaced
1/t* in Eq. (2.11) by s1/t* ds1−,2¹2d [40,44].

The total stress tensorPJ =hPi jj is expressed as[2,13]

Pi j = pdi j + Cs=ifds= jfd − spi j − h0s=iv j + = jvid,

s2.13d

where p is a pressure,=i =] /]xi, sJp=hspi jj is the network
stress arising from the deviationdWij , and the last term is the
viscous stress tensor withh0 being the solvent viscosity. As-
suming low Reynolds number flows and setting]v /]t=0
(the Stokes approximation), we obtain[13]

− = · PJ = − = p1 + Fp + h0=2v = 0, s2.14d

where p1=p−fdF /df+ fFH+Cu=fu2/2 ensures the incom-
pressibility condition(2.10). TheFp is the force density act-

ing on the polymer due to the fluctuation off andWJ of the
form

Fp = − f =
dF

df
−

1

4
Q = G + = · sJp. s2.15d

The network stress tensor in Eq.(2.13) is expressed as

spi j = Go
k

WikdWkj +
1

4
GQdi j . s2.16d

To expressvp and vs in terms of f and WJ , we assume
slow processes and neglect the acceleration or inertial terms
in the two-fluid dynamic equations[5]. By setting]w/]t=0,
we obtain

w =
1 − f

z
Fp, s2.17d

wherez is the friction coefficient between polymer and sol-
vent and is estimated asz,6ph0jb

−2,h0f2/a2 in the semi-
dilute solution in terms of the blob sizejb. The mean veloc-
ity v is expressed as

v = kvl + F 1

− h0=2FpG
'

, s2.18d

where kvl is the mean flow such as the shear flow in Eq.
(1.1), f¯g' denotes taking the transverse part(whose Fou-
rier component is perpendicular to the wave vector), and the
inverse operations−h0=2d−1 may be expressed in terms of
the Oseen tensor in the limit of large system size[2].

In the following, we make our equations dimensionless by
measuring space and time in units of, andt0 defined by

, =
aN1/2

2Î18
,

1

t0
=

4kBT

h0v0N
3/2, s2.19d

where, is of the order of the gyration radius, and the timet0
is the conformation relaxation time of a single chain in the
dilute case. In our simulations, the mesh size in numerical
integration will be set equal to,. The velocities will be mea-
sured in units of, /t0 and the stress components given in Eq.
(2.13) will be measured in units of

s0 = kBT/sv0N
3/2d = h0/s4t0d. s2.20d

To avoid cumbersome notation, in the following we use the
same symbols fort, r, =, and the velocities even after res-
caling.

C. Rheological quantities

The conformation tensorWJ obeys Eq.(2.11) with t* be-
ing replaced byt* / t0 in the dimensionless form. Following
Ref. [13], we assume
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t * /t0 = sF4 + 0.2d/s1 + Qd, s2.21d

whereQ=QsWJ d is defined by Eq.(2.6) and the factor 1/s1
+Qd accounts for quickening of the stress relaxation under
large deformations[55]. Similarly, some authors assumed a
deformation-dependent stress relaxation time in the rheologi-
cal constitutive equations[54,56].

Consequences of Eq.(2.21) are as follows.(i) In the di-
lute regime we havet* >0.2t0. (ii ) The relaxation timet in
Eq. (2.12) in the linear-response regime becomes

t = t0sF4 + 0.2d. s2.22d

(iii ) The zero-frequency linear viscosity becomes

h/h0 = 1 + 1
4gF3t/t0 > 1 + 1

4gF7, s2.23d

where the small number 0.2 int is omitted.(iv) Let us con-
sider a homogeneous state under shear, where vp=v=ġyex
andf=const. In the high shear limitġt@1, by solving Eq.
(2.11) we obtain shear thinning behavior,

spxy , gF3sġtd3/5, Np1 , gF3sġtd4/5. s2.24d

Non-Newtonian behavior can arise from the factor 1/s1
+Qd in t* even in homogeneous states.

Next we give dimensionless forms of the stress compo-
nents for general inhomogeneous cases. From Eqs.(2.14)
and (2.16), the shear stresssxy and the normal stress differ-
enceN1=sxx−syy in units of s0 are written as

sxy = spxy −
4

F
=xF=yF + 4s=xvy + =yvxd, s2.25d

N1 = Np1 −
4

F
s=xF=xF − =yF=yFd + 8s=xvx − =yvyd,

s2.26d

wherespxy andNp1 are the network contributions,

spxy = gF3sWxx + Wyy − 1dWxy, s2.27d

Np1 = gF3sWxx + Wyy − 1dsWxx − Wyyd. s2.28d

The second terms in Eqs.(2.25) and (2.26) arise from inho-
mogeneity inF and give rise to the surface tension contri-

butions in two-phase states[57]. The last terms are the usual
viscous contributions.

The physical meaning ofspxy andNp1 can be seen if they
are related to the degree of chain extension. To this end, let

us decomposedWJ as

dWJ = w1e1e1 + w2e2e2, s2.29d

wherew1 and w2 are the eigenvalues ofdWJ with w1^w2,
and

e1 = scosu,sinud, e2 = s− sin u,cosud s2.30d

are the corresponding eigenvectors withu being the angle
between the stretched direction and thex axis. We may as-
sume −p /2,u%p /2 without loss of generality. In terms of
these quantities, we obtain

spxy =
g

2
F3s1 + w1 + w2dsw1 − w2dsin 2u, s2.31d

Np1 = gF3s1 + w1 + w2dsw1 − w2dcos 2u. s2.32d

In weak sheartġ!1, we have

w1 − w2 , tġ, u − p/4 , tġ, s2.33d

so sin 2u>1 and cos 2u,tġ, leading to the well-known re-
sultsspxy,hġ andN1,htġ2 in the Newtonian regime[54].
Here, for the analysis in Sec. III, we introduce an extension
vector defined by

wsr,td = sw1 − w2de1, s2.34d

whose magnitude and direction represent the degree of chain
extension and the extended direction. In our simulations, we
shall see that the magnitudes ofw1 andw2 are both consid-
erably smaller than 1 at most space points. That is, the de-
gree of extension is rather weak, but the network stress can
overwhelm the viscous stresss~h0d because of the large fac-

tor gF3. This justifies the Gaussian form ofQsWJ d in Eq.
(2.6) in this work.

III. NUMERICAL RESULTS

We need a numerical approach to understand the nonlin-
ear regime of shear-induced phase separation. To this end,

FIG. 2. Crossover of domain patterns of
Fsr ,td below the spinodal curve with increasing
g from 0 to 1 foru=3 andkFl=2 in shear flow
with ġ=0.025.
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we integrate our model equations(2.7) and(2.11) in the pre-
vious section on a 2563256 lattice in two dimensions. The
mesh sizeDx is set equal to, in Eq. (2.19) [58]. We use a
numerical scheme developed by one of the present authors
[47,59], which uses the deformed coordinatesx8=x− ġty and
y8=y and enables the FFT(fast Fourier transform) method to
be carried out for shear flow. Here we impose the periodic
boundary conditionfsx8 ,y8+Ld= fsx8+L ,y8d= fsx8 ,y8d for
any quantityfsx8 ,y8d in terms of the deformed coordinates.

At t=0, we assign Gaussian random compositions at each
lattice point, with mean valuekFl and variance 0.1. For
t.0, we will solve the dynamic equations in the presence of
shear without the random noise terms. Here, if quenching is
from a one-phase state not very far above the coexistence

curve, the initial variance is not very small and our choice
can be appropriate[60].

A. Crossover from Newtonian to viscoelastic fluids below the
coexistence curve

Even below the coexistence curve, if the shear rate is
sufficiently strong sġt@1d, the composition fluctuations
vary in space gradually and there is no distinct phase sepa-
ration. However, with increasing the quench depth(or u)
and/or decreasing the shear rateġ, the shear-induced compo-
sition fluctuations become composed of polymer-rich and

FIG. 3. Time evolution of the domain sizeRstd (=the inverse of
the perimeter length density) below the spinodal curve with increas-
ing the shear modulus asg=0, 0.01, 0.1, and 1 in shear flow with
ġ=0.025. The other parameters are the same as those in Fig. 2. The
domain growth is nearly stopped forg=1 and 0.1 within the simu-
lation time.

FIG. 4. Time evolution of the domain sizeRstd below the spin-
odal curve for g=1, u=3, and kFl=2. Here ġ=0.0005, 0.005,
0.025, and 0.05. At small shear rates, flow-induced coagulation ac-
celerates the domain growth as demonstrated by the curve ofġ
=0.005. For ġ@0.005, shear-induced domain breakup becomes
dominant and dynamical steady states are realized at smaller do-
main sizes.

FIG. 5. Time evolution of
ksxylstdRstd below the spinodal
curve at various shear rates forg
=1 andu=3. Here kFl=2 (solid
lines) or kFl=2.5 (dotted lines).
At long times, the curves tend to
fluctuate around 15-20, confirm-
ing Eq. (3.2).
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solvent-rich regions with sharp interfaces. Here we show that
the domain morphology strongly depends on the shear
modulusG.

In Fig. 2 we show phase separation patterns att=600 and
2000 forg=0 (a), 0.01(b), 0.1 (c), and 1(d) after quenching
at t=0, whereg represents the magnitude ofG in Eq. (2.5).
The other parameters take common values askFl=2, u=3,
and ġ=0.025. The initial Deborach number before phase
separation is given byġt= ġ F4=0.4. In the phase-separated
semidilute regions, we have

Fcx > 3.70 s3.1d

for u=3 on the polymer-rich branch of the coexistence curve
in Fig. 1, so within the polymer-rich domains the viscosity
ratio in Eq. (2.23) is given by 1(a), 24.8 (b), 239 (c), and
2384(d). We can see gradual crossover from the patterns of
the Newtonian fluids to those of highly asymmetric vis-
coelastic fluids.

In Fig. 3, we show time evolution of the inverse of the
perimeter length density forg=0, 0.01, 0.1, and 1, using the
same conditions as in Fig. 2. It may be regarded as the typi-
cal domain sizeRstd. The domains continue to grow forg
=0 and 0.01 within our simulation timet,104, but the
growth is gradually slowed down with increasingg. For g
=1 and 0.1, we can see that the coarsening is nearly stopped.

B. Domain size in two-phase flow

Hereafter we fixg at 1. In Fig. 4, we show time evolution
of the domain sizeRstd for kFl=2 andu=3 at various shear
rates ġ=0.0005, 0.005, 0.025, and 0.05. Remarkably, the
coarsening is faster forġ=0.005 than forġ=0.0005. This
should be due to shear-induced coagulation of domains ob-
served in near-critical fluids[13,61], where shear accelerates

collision and fusion of the domains. For shear rates larger
than 0.025, dynamical steady states are realized, where there
should be a balance between the thermodynamic instability
and shear-induced domain breakup as in the Newtonian case
[2,13].

The characteristic domain sizeRD in the steady states is of
interest. In Newtonian immiscible mixtures under shear, we
have RD,CNew/ ksxyl in the low-Reynolds-number limit
[2,13,16], whereCNew is of the order of the surface tensiong
[62]. This formula follows from a balance between the sur-
face energy densityg /RD and the shear stress. Also in our

FIG. 6. Three contributions,spxy (network), −4s¹xFds¹yFd /F
(gradient), and 4s¹xvy+¹yvxd (viscous), to the local shear stress
sxysx,yd in Eq.(2.25) in the range 0,y,128 at x=0 for u=3,
kFl=2, and ġ=0.05. The network stress is overwhelming in the
polymer-rich regions, while the viscous one is relatively large in the
solvent-rich regions. The gradient contribution is appreciable only
in the interface regions, where the three contributions are of the
same order.

FIG. 7. Time evolution ofFsr ,td at ġ=0.05 for u=3, kFl=2,
andg=1 below the spinodal curve. The bottom figure is the profile
at t=500 in thex direction aty=128. The domain size evolution is
given by the curve of the largest shearġ=0.05 in Fig. 4.
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non-Newtonian case, Fig. 5 suggests the same form,

RD , Cvis/ksxyl s3.2d

at variousġ. The coefficientCvis is independent ofġ but
dependent onkFl as 20, 13, and 11 forkFl=2.5, 2, and 1.7,
respectively. Figure 5 displays the productksxylstdRstd as a
function of time after quenching atg=1 andu=3 with kFl
=2 andkFl=2.5. The curves tend to composition-dependent
constants independently ofġ at long times to confirm Eq.
(3.2). However, we cannot derive Eq.(3.2) using the simple
arguments in this paper.

In the viscoelastic case, as in Eqs.(2.25) and (2.26), the
stress consists of the three contributions. As shown in Fig. 6
at ġ=0.05, the network stressspxy dominates over the gradi-
ent contribution in the polymer-rich regions, whereas the net-
work, gradient, and viscous ones are of the same order in the
interface regions. The particularly large size ofspxy in the
polymer-rich regions suggests that these regions should be-
have like percolated gels and mostly support the applied
stress. On the other hand, the viscous contribution is very
small in the polymer-rich regions, but is nearly the sole con-
tribution in the solvent-rich regions.

C. Fine domains at strong shear

For the largest shear rateġ=0.05 in Fig. 4, Fig. 7 displays
time evolution of the domains, where the polymer-rich do-
mains are percolated and the angle of extensionu defined by
Eqs. (2.29) and (2.30) is close top /4. These closely re-
semble the observed microscope pictures(in the xz plane)
[29,30]. The profile ofF at the bottom of Fig. 7 shows that
F becomes close to 0 in the solvent-rich regions, while it is
aroundFcx in Eq. (3.1) in the polymer-rich regions.

Figure 8 displays the structure factorSskx,kyd of the com-
position fluctuations in the steady state in Fig. 7. It has sharp
double peaks along thekx axis with peak wave numberkp
>s2p /256d39, although we cannot see marked anisotropy
in the shapes of domains. The origin of the peaks is that the
domains are connected and hence are aligned perpendicu-

FIG. 8. Structure factorSskd for the composition patterns in Fig.
7 in the dynamical steady state.

FIG. 9. Time evolution of the average shear stressksxylstd, the
average normal stress differencekN1lstd, and the average variance
ÎkdF2lstd (dotted line) at ġ=0.05 foru=3, kFl=2, andg=1 below
the spinodal curve.

FIG. 10. Time evolution ofFsr ,td at ġ=0.005 for u=3, kFl
=2, andg=1 below the spinodal curve. For this shear rate, Fig. 4
shows that the domain size increases up to the system size att
=104.
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larly to the flow direction on the spatial scale of 2p /kp
>28.

In addition, we notice that the profile ofF (bottom one in
Fig. 7) exhibits spikelike behavior around some extrema,
where=F varies over distances of order 5[58]. These steep
changes arise from convection due to the velocity fluctua-
tions on such small scales in the nonlinear regime.

Figure 9 shows the average stress componentsksxylstd
and kN1lstd versus time, which exhibit pronounced over-
shoots and subsequent noisy behavior. Here the network con-
tributions in Eqs.(2.31) and (2.32) are much larger than the
surface tension contributions arising from the second terms
in Eqs.(2.25) and(2.26) by at least one order of magnitude.
This is consistent with Fig. 6. Also shown is the average
varianceÎkdF2lstd, which slowly increases over a long tran-
sient time of order 2000. This arises from desorption of the
solvent from the polymer-rich regions into the solvent re-
gions, as was observed by Tanaka and co-workers[6,7].

D. Large fluctuations at weak shear

For the smaller shear rateġ=0.005, Fig. 10 demonstrates
that the domain growth continues up to the system size in the
simulation time t=104. Furthermore, comparing the two
snapshots att=300 and 500, we can see that the domains are

rotated as a whole in the early stage. Figure 11 shows that the
chaotic temporal fluctuations of the stress are much more
exaggerated than in Fig. 9. Unusually the normal stress fre-
quently takes negative values, while it is always positive at
ġ=0.05 as shown in Fig. 9 at anykFl.

In Fig. 12, we further examine the origin of the strong
fluctuations in this case. It displays the snapshots of the ex-
tension vector defined by Eq.(2.34), ksxyl, kN1l, and the
following rotationally invariant shear gradient:

S= F1

2o
i j

s=iv j + = jvid2G1/2

. s3.3d

NoticeS=0 for pure rotation. Att=500, the angleu exceeds
p /4 in most of the spatial points of the polymer-rich regions,
resulting inkcos 2ul=−0.21 andkN1l=−0.44. Att=1500, the
points withu,p /4 constitute a majority in the polymer-rich
regions, leading tokN1l=0.24. These snapshots and those of
the stress components clearly demonstrate the presence of
stress linesforming networks, which are supported by the
percolated polymer-rich regions and where the extension and
the stress take large values. The typical values ofw1−w2 on
these lines are 0.16 att=500 and 0.11 att=1500. For this
shear rate, we can see thatkN1l becomes negative when the
stress lines collectively rotate and the angleu exceedsp /4

FIG. 11. Chaotic time evolu-
tion of the average shear stress
ksxylstd and the average normal
stress difference kN1lstd at ġ
=0.005 in the run which produced
Fig. 10. For this weak shear, the
deviatoric stress components ex-
hibit large fluctuations andkN1l
3std frequently takes negative
values.

FIG. 12. Patterns of the exten-
sion, the shear stress, the normal
stress difference, and the rotation-
ally invariant shear gradient(3.3)
at t=500 (top) and t=1500 (bot-
tom). The corresponding composi-
tion patterns are shown in Fig. 10.
We can seestress lineswith large
values of the extension and the de-
viatoric stress components. TheS
is large in solvent-rich slipping
regions.
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on these lines, while forġ=0.05 the stress lines are broken at
much faster rates andkN1l remains positive. On the other
hand,S in Fig. 12 takes large values in the solvent-rich re-
gions, indicating that the polymer-rich domains are largely
rotated rather than being anisotropically deformed in shear.
This tendency becomes conspicuous with decreasing shear.
See the black regions ofS in Fig. 12, whereF is small and
slipping is taking place.

Figure 13 shows a bird view of the velocity gradient
]vx/]y (right) and the corresponding snapshot ofF at t
=2000, where we chooseġ=0.025, an intermediate shear
rate in Fig. 4. The other parameters are the same as in Figs.
4–12. We recognize that the solvent-rich regions support this
velocity gradient. This means that strongly deformed
solvent-rich domains act as a lubricant serving to diminish
the macroscopic stress or viscosity. This lubricant effect can

be effective even for a small volume fraction of the solvent-
rich domains because of the strong contrast of the viscoelas-
tic properties in the two phases. In fact, Wolf and Sezen[63]
presented this view to interpret their finding of a viscosity
decrease which signals the onset of phase separation in shear
in semidilute solutions.

E. Domain morphology and rheology for variousŠF‹

Next we show that the domain morphology also strongly
depends on the average polymer volume fractionkFl. Figure
14 displays snapshots ofFsr ,td at ġ=0.05, u=3, andg=1
for three compositions,kFl=1.2, 1.7, 2.0, and 2.5(from
left). The time is t=1500, where steady states are almost
reached in all these cases. The profiles ofF in thex direction
at y=128 are also shown in the upper part. We can see that

FIG. 13. Snapshots of]vxsr ,td /]y andFsr ,td at ġ=0.025 foru=3, kFl=2, andg=1 in a steady state(left). A bird view of ]vxsr ,td /]y
is also shown(right). This velocity gradient takes large values where slipping is taking place in the percolated solvent-rich region.

FIG. 14. Snapshots ofFsr ,td for kFl=1.2,
1.7, 2.0, and 2.5 in steady states atġ=0.05. The
profiles ofF in thex direction aty=128 are also
shown.
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F>Fcx>3.7 within the polymer-rich regions. With increas-
ing kFl, the collision frequency among the domains in-
creases and the domain size decreases. In fact, the domain
size RD determined from the perimeter length is 13.75,
10.83, and 6.67 forkFl=1.7, 2.0, and 2.5, respectively. Even
for kFl=1.2, the polymer-rich domain collide frequently and
the domain shapes largely deviate from sphericity. In Fig. 15,
we plot time evolutions of the space-averaged shear stress
ksxylstd for these values ofkFl. In the dynamical steady
state, we calculate the normalized shear viscosity increase
Dh /h0=ksxyl / ġh0−1. If it is averaged over time, it is given
by 2, 4, 6.5, and 15 forkFl=1.2, 1.7, 2.0, and 2.5, respec-
tively. It is remarkable that the stress overshoot is nonexist-
ent at smallkFl and gradually develops with increasingkFl.

F. Deformation of spongelike domains at small shear

Finally, we examine how the spongelike domain structure
observed by Tanaka and co-workers[6,7] is deformed by
shear flow. On the left of Fig. 16 we show one example of
such a domain structure without shear forkFl=1.2, u=3,

andg=1, where the polymer-rich regions are percolated de-
spite relatively smallkFl [9,10]. The right part is the result
under shearġ=0.005 with the other parameters being com-
mon, where the applied strainġt is 1, 2, 5, and 10 att
=200, 400, 1000, and 2000 for the given snapshots, respec-
tively. For this weak shear rate, the initial stage of phase
separation is not much different from the case without shear
but the coarsening is quickened as in Fig. 4 forkFl=2. Here
the polymer-rich domains are gradually thickened but remain
highly extended in the flow direction, while the domains in
Fig. 14(a) are torn into pieces because of larger shearġ
=0.05. Also in this case the average shear stressksxylstd and
normal stress differencekN1stdl exhibit chaotic behavior and
the productksxylstdRstd tends to a constants,2.4d. Again as
in Fig. 11, the negativity of the normal stress difference is
conspicuous in the early stage(not shown here).

IV. SUMMARY AND CONCLUDING REMARKS

Though performed in two dimensions, we have numeri-
cally solved the two-fluid dynamic model of sheared semidi-
lute polymer solutions with theta solvent, where the chain
deformations are represented by the conformation tensorWij .
The free-energy density depends onWij as well as the poly-
mer volume fractionf as in Eq.(2.3). In our simulations, the
initial value of the composition is random as described at the
beginning of Sec. III, but the thermal Langevin noise terms
in the dynamic equations are neglected fort.0. The subse-
quent heterogeneous fluctuations are produced by the nonlin-
ear interactions among the fluctuations and not by the ther-
mal noise.

We summarize our main results.
(i) With varying the parameterg representing the magni-

tude of the shear modes, we have examined spinodal decom-
position as in Figs. 2 and 3, which show the crossover of the
domain growth from Newtonian to viscoelastic fluids. The
domain growth is nearly stopped forg*0.1 at relatively
large shear within our simulation time.

(ii ) The domain growth in spinodal decomposition has
been examined atg=1 with varyingġ in Fig. 4. The domain
sizeRD in steady states becomes finer with increasingġ and,

FIG. 15. Time evolution ofksxylstd at variouskFl. The corre-
sponding composition patters are shown in Fig. 14. The overshoot
disappears at smallkFl.

FIG. 16. Spongelike domain structures with-
out shear(left) and under shearġ=0.005 (right)
for kFl=1.2, u=3, andg=1.
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as demonstrated in Fig. 5, it satisfies the relation(3.2). Its
theoretical derivation is not given in this paper. In Fig. 6, the
network, gradient, and viscous stress contributions are com-
pared, which indicates that the polymer-rich regions mostly
support the applied stress. In Fig. 9, the varianceÎkdF2lstd
continues to increase even after the saturation of the stress
and the domain size, which arises from slow desorption of
the solvent from the polymer-rich regions[6,7].

(iii ) Figure 7 displays the composition patterns at rela-
tively large shearġ=0.05. Its structure factor in Fig. 8 sug-
gests that the domains are more correlated along the shear-
gradient direction rather than along the flow direction. This is
consistent with the experiments[18,21,29,30].

(iv) At ġ=0.05, F fluctuates in the region ofuF−kFlu
between 0 andFcx in Fig. 7, exhibiting the spikelike behav-
ior. Another notable difference is that the variance saturates
rapidly above the coexistence curve[13,36] but slowly at a
larger value in Fig. 9.

(v) At much smaller shearġ=0.005, the domain size be-
comes larger as in Fig. 10 and the stress fluctuations look
much enlarged as in Fig. 11, as compared to the stress curves
in Fig. 9 for ġ=0.05. For this small shear, percolated stress
lines are formed in the polymer-rich regions as in Fig. 12.
There, we also notice that the nonrotational velocity gradient
S defined by Eq.(3.3) becomes large in the solvent-rich re-
gions. Figure 13 shows that the velocity gradient]vx/]y
takes large values in the solvent-rich regions, suggesting that
they act as a lubricant.

(vi) Figure 14 illustrates how the domain morphology de-
pends on the average polymer volume fractionkFl. Figure
15 shows that the stress-strain curves also strongly depend
on kFl.

(vii ) Figure 16 shows time evolution of the spongelike
patterns without shear[6,7] and under weak shear.

Furthermore, we make comments on experimental as-
pects.

(i) We have calculated the space averages of the stress
components. In usual rheology experiments, however, the
stress acting on the boundary surface is measured. In a dy-
namical steady state, the time averages of the space-averaged
stress and the surface stress do coincide, while their time-

dependent fluctuations can be different. We note that the
time-dependent fluctuations in these quantities become sig-
nificant when the fluctuating entities are of very large sizes.
Here it is worth noting that more than three decades ago
Lodge [26] reported abnormal temporal fluctuations of the
normal stress difference at a hole of 1 mm diameter from a
polymer solution contained in a cone-plate apparatus. He as-
cribed its origin to growth of inhomogeneities or gel-like
particles.

(ii ) Below the coexistence curve, we have shown sharp
stress overshoots at relatively strong shear in Fig. 9. How-
ever, the stress-strain curves at relatively small shear in Fig.
11 and those corresponding to Fig. 16(not shown) are more
complex, where the frequent negativity of the normal stress
is conspicuous. In the snapshots in Figs. 7, 10, and 16, the
domains are collectively rotated as a whole in the early stage.
Thus the first normal stress might become negative(at least)
after its first peak.

(iii ) Disappearance of the stress peaks at small average
volume fractions in Fig. 15 should also be observed.

(iv) Experiments are needed on establishment of dynami-
cal steady states with the characteristic heterogeneity length
given by Eq. (3.2). Strong deviations of the polymer-rich
domains from sphericity are also characteristic. These results
gained from the simulations could be compared with micro-
scope observations[17,29].

In the future, we will perform simulations to examine
heterogeneous fluctuations in various sheared complex fluids
including polymer blends and wormlike micellar systems. In
particular, we will perform simulations at fixed shear stress
as well as those at fixed shear rate.
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