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Viscoelastic phase separation in shear flow
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We numerically investigate viscoelastic phase separation in polymer solutions under shear using a time-
dependent Ginzburg-Landau model. The gross variables in our model are the polymer volume fraction and a
conformation tensor. The latter represents chain deformations and relaxes slowly on the rheological time giving
rise to a large viscoelastic stress. The polymer and the solvent obey two-fluid dynamics in which the viscoelas-
tic stress acts asymmetrically on the polymer and, as a result, the stress and the diffusion are dynamically
coupled. Below the coexistence curve, interfaces appear with increasing the quench depth and the solvent
regions act as a lubricant. In these cases the composition heterogeneity causes more enhanced viscoelastic
heterogeneity and the macroscopic stress is decreased at fixed applied shear rate. We find steady two-phase
states composed of the polymer-rich and solvent-rich regions, where the characteristic domain size is inversely
proportional to the average shear stress for various shear rates. The deviatoric stress components exhibit large
temporal fluctuations. The normal stress difference can take negative values transiently at weak shear.
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[. INTRODUCTION contrast to shear-induced homogenization or mixing ob-
served in near-critical fluidgl4,15 and in ternary polymer
Shixtures [16,17. In systems exhibiting shear-induced mix-
g, the entanglement effects are not severe and the hydro-
ynamic interaction is suppressed by shgal3. In semi-

ilute polymer solutions near the coexistence curve with

In phase-separating polymer systems, domain morphol
gies are influenced by a number of factors, including th
molecular weights, the composition, closeness to the critic
point, and viscoelasticityf1,2]. Particularly when the two d

components have distinctly different viscoelastic propertie igh molecular weight¢M =2 x 1(F), recent scattering ex-

as in semidilute polymer solutions and polymer blends of ~. : .
. . . .periments have most unambiguously detected shear-induced
long and short chains, unique interplays emerge between vis;

coelasticity and thermodynamic instability. In such asymmet- emixing [18-23. Rheological effects in sheared polymer
. y . y y- : y solutions are also conspicuous, which include large stress
ric systems, salient effects observed in experiments are

A ) s FRictuations upon demixing by shef26,27 and a second
LO(-:I‘It?(\:Ni.OZ]I‘;iSCti,eI:tE(ar)ly;:lséag?] dSSpIggd;:edisg\sgpzilrt%%n,rt:; kI'overshoot in the shear stress as a function of time after ap-
d P 4 plication of sheaf20,28. Here microscope pictures of com-

~ -2 i is-
L(q)|/L(_0)I (&,69)™ for g Ir?rger than Lhe mve;]rsle of a %"S position heterogeneities in polymer solutions and asymmet-
coelastic lengtiye [3,4], whereé,e can be much longer than i v mer blends under shear are informat2e,3Q.

the gyration radiug5]. Second, in late-stage spinodal de- tpaqretically, for sheared polymer solutions, the rel-

composition, spongelike network structures appear traNayance of the dynamical coupling was first pointed out by

siently in the .asymmetric. cagé,7]. The physi_cal prigin of . Helfand and Fredricksof31]. Some linear calculations for
these effects is now ascribed to the stress-diffusion coupling i fluctuations were also performed in Ginzburg-Landau

in viscoelastic binary mixturefS]. This coupling is predicted  gopames where a conformation tensor represents the chain
to give rise to various effects including nonexponential deca}ﬁeformations[SZ—Bq Numerical analysigstill in two di-

in dynamic light scattering2,5] and shear-induced fluctua- ongjongusing such schemes gave insights into the nonlin-
tion enhancement. In the case of spinodal decomposition, the, . cpaar effectil3,36—39. That is, slightly above the co-
consequences of the dynamllc coupling were .StUd'e.d analytléxistence curve, composition heterogeneiti€gh on
cally in the linear growth regim@] and numerically in the mesoscopic spatial scales emerge with increagirhe am-

Iat;stageﬁcosrsenirr[]@—ll]. fion i | . ‘ plitude of ¢ can even be of the order of the average,
OW eTiects on pnase separation In POymeric SyStems alg,,; o here are no clear interfaces. If this takes place, the

even more dramati€l,12,13. In this paper, we consider a system becomes turbid, resulting in shear-indupb@se

simple shear flow with mean velocity profile separation or demixingobserved above the coexistence
(v) = we,, (1.2 curve. We remark that similar Ginzburg—Landau models
[40,47 have been used to analyze shear-banding effects in
where the flow is in the direction, e, being the unit vector wormlike micellar system§42—44.
along thex axis, and the mean velocity gradiepts in they In entangled polymers, the rheological relaxation time
direction. Application of shear or extensional flow to vis- can be very lond45], so experiments in the Newtonian and
coelastic systems in one-phase states sometimes inducesi@n-Newtonian regimes are both possible, where the Debo-
strong increase of the turbidity, indicating shear-inducedrach numbebe=vyr is larger or smaller than 1, respectively.
composition heterogeneities or demixing. This is in markedn semidilute solutions, the strong composition dependence
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of the solution viscosityp=7(¢) can lead to shear-induced -2 7T

fluctuation enhancement for weak shear<1 [31], while ;
the normal stress effect comes into play in the non- 25 A
Newtonian regimeyr=1 [2,21,33. '
Without viscoelasticity, a number of groups have per-
formed simulations of phase separation in sheared simpleg -3
fluids [46,47. However, simulations have still been rare for (;:,
sheared viscoelastic fluid¢3,36—39. In this paper, we will =
examine nonlinear dynamic regimes of sheared polymer so- % -3.5 |- X,
lutions in theta solvent below the coexistence curve. Both in A
simple and polymeric fluids, if the system is quenched below
the coexistence curve under shear, the domain growth is - \
eventually stopped and dynamically steady states are real .
ized. For Newtonian fluids, dynamics in sheared two-phase ;5 k!
states have long been studigj17,48,49, but for viscoelas- 6 7
tic fluids such nonequilibrium effects remain almost unex- ©=4/4.
plo{'?g.organization of this paper is as follows. In Sec. II, we FIG. 1. Coexistence curvesolid ling) and spinodal curve
. 2 . ’ "~ 7 (dashed ling for polymer solutions obtained from E@.1) in the
will explain our theoretical scheme. In Sec. Ill, we will . " =NY2(1-2y) and ®=/ . The points(X) represent
present our numerical results in two dimensions below thg,. initial states of our simulations. ¢
coexistence curve for various shear rates and polymer vol-

ume fractions. Section IV summarizes new results and gives . _ . .
To describe the viscoelastic effects on the composition

-

3
e
X

some predictions. . " - . .
inhomogeneities, it is convenient to introduce a tensor dy-
namic variableW={Wj;}, which is a symmetric tensor repre-

Il. THEORETICAL BACKGROUND senting chain conformations undergoing deformations

32-34,50,51 As shown in the following, the deviation

In this section, we briefly survey our theoretical frame- L _ .
i =Wij— 9 gives rises to a network stress.

work to discuss viscoelastic phase separation under the she@'ii _ -
flow (1.1). The gross variables in our model are the polymer 1h€ _G'”ZbUfg'La”Ef’f‘U frge energy functional due to the
volume fractions and a conformation tensak. The latter ~ fluctuations of¢ andW is written as
represents chain deformations and relaxes slowly on the 1 1 .
rheological time giving rise to a large viscoelastic stress. In F= J dr[fFH+ —C|V ¢+ =GQW) |. (2.9
Sec. Il A we first present the viscoelastic Ginzburg-Landau 2 4
free energy, and then in Sec. Il B the dynamic model isThe coefficientC of the gradient term is calculated in the
given. The rheological properties of our dynamic equationgandom-phase approximatiga5] in the semidilute regime
are also discussed in Sec. Il C. See Rg#s13] for the de- g
tails of our theoretical framework.

C=(ksT/18vp)a% . (2.4

We shall see thab has the meaning of the shear modulus for
. . . small deformations changing rapidly compared with the
Phase behavior of polymer solutions near the CoeX'Stenclfﬁeological relaxation time. It is assumed to be of the scal-

curve is usually described in terms of the FIory—Hugginsing form

(FH) free energy density for the polymer volume fracti¢n

assumed to be much smaller thaf4sb], G =(kgT/vg)ge?,
- kgT ¢I (1 , 1 3 where g is an important dimensionless parameter in our
F e LN ne+ 2 X ¢ +g¢ @D gimulations, and is of order 1 in theta solve@t13. Al-

N < th lume of a monomera® with a being the though experiments indicatedl=2.25 [52,53, we will set
whereu is the vo _ TR ; Y
monomer size in three dimensigrend y is the interaction «=3 for simplicity. The simplest form foQ(W) is given by
parameter dependent on the temperaflifbeing equal to Q(\KI) = (5W)2. (2.6)
1/2 at the theta conditionAt the critical point we havep . U
=¢.=N"Y2 andN¥?(1-2y)=-2. In the following, it is con-

venient to scalep and 2y—-1 as ) )
B. Dynamic equations

— — NI1/2, _
P =¢lpe, U=N"H2x - D). (2.2 We next present the dynamic equations assuming the two-

In Fig. 1, we show the phase diagram in the planepoé,  fluid dynamics for the polymer and the solvent with the ve-
and NY2(1-2y)=-u. The spinodal curve in Fig. 1 is ob- locities, v, andv, respectively, including the new variable

tained from(fen/ d¢?)+=0 and is written asi=®+d1, W [32-34,40. These equations may be treated as Langevin

A. Viscoelastic Ginzburg-Landau free energy

(2.5
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equations with thermal noise terms, but we will neglect the -V .[T=- + T4 2 _
noise terms hereafter. Formal frameworks for viscoelastic v VputFpt mVv=0, (219
fluids have also been discussed in the literaf&@57. where p;=p- ¢SF/ 8¢+ fry+C|Vp2/2 ensures the incom-

We assume that the mass densities of pure polymer angtessibility condition(2.10. The 7, is the force density act-

solvent are the same. Then the polymer mass fragii8p  j, on the polymer due to the fluctuation #fandW of the
coincides withe. It obeys

form
J
~$d=-V . =—V. -Vv. - oF 1 -
(5't¢ v (¢vp) v (¢v) v [¢(1 d))W], fp:_d)V%_ZQVG_FV -Gy (2.15)
(2.7 . .
The network stress tensor in E@.13) is expressed as
where
1
W=v, -0 (2.9 Opij :Gg \Niké\Nkj"'ZGQ(Sij- (2.19
is the relative velocity between polymer and solvent. The . -
mean velocityv is defined by To expressv, andvs in terms of ¢ and W, we assume
slow processes and neglect the acceleration or inertial terms
v=dv,+(1-Pus. (2.9 in the two-fluid dynamic equatiori®]. By settingow/dt=0,
. we obtain
The two velocitiesv, and vs are expressed as,=v+(1
- ¢)w andvs=v - ¢w. For simplicity, we assume the incom- 1-¢
pressibility condition for the average velocity, w= Iz Fps (2.17
V-v=0. (2.10 where/ is the friction coefficient between polymer and sol-

: : 2 42702 "
On the other handy -w is nonvanishing in general and gives VENt and is estimated ds- 6wy, "~ 7o¢”/a” in the semi
rise to diffusion in Eq.(2.7) for small deviations around _d'IUte_ solution in terms of the blob sizg. The mean veloc-
ity v is expressed as

equilibrium.
Because@N represents the network deformation, its motion 1
is determined by the polymer velocity, and its simplest v=(v)+ Wfp ' (2.18
1

dynamic equation is of the form
where (v) is the mean flow such as the shear flow in Eq.
(1.2), [---], denotes taking the transverse pawhose Fou-
rier component is perpendicular to the wave vegtand the
(2.11) inverse operationi-7,V?)™* may be expressed in terms of
the Oseen tensor in the limit of large system Jizp
whereDj;=dv;/ dx; is the gradient of the polymer velocity. In the following, we make our equations dimensionless by
The left-hand side of Eq.2.1)) is called the upper convec- measuring space and time in unitstfnd =, defined by
tive time derivative in the rheological literatufg4], which

d 1
[E tv,- V }\Nij - % (DiWi + WD) = = — oW,

keeps the frame invariance of the tensor propertie&/gfin (= aN'2 1 dkeT (2.19
Eq. (2.21) below, we will assume that the relaxation tire 218" 7 muoN? '

on the right-hand side depends éW; as well as¢. The
usual rheological relaxation timeis obtained in the New- where¢ is of the order of the gyration radius, and the time

tonian limit, is the conformation relaxation time of a single chain in the
dilute case. In our simulations, the mesh size in numerical

7= lim 7*. (2.12  integration will be set equal t6. The velocities will be mea-
W—0 sured in units of / 7y and the stress components given in Eq.

In the problem of shear-banding flow, some authors replace&z'13 will be measured in units of

i * _p2y2
The total stress tensdi={11;;} is expressed ag,13
To avoid cumbersome notation, in the following we use the
IL; = pé + C(Vi) (V) — apj — m0(Viv; + Vjvy), same symbols fot, r, V, and the velocities even after res-

(2.13 caling.

wherep is a pressureV;=d/dx, d,={op;} is the network

. o A C. Rheological quantities
stress arising from the deviatiai;, and the last term is the

viscous stress tensor withy, being the solvent viscosity. As- The conformation tenso obeys Eq(2.11) with 7 be-
suming low Reynolds number flows and settiig/9t=0  ing replaced byr*/ 7y in the dimensionless form. Following
(the Stokes approximatignwe obtain[13] Ref. [13], we assume

0515083-3
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®)  g=0.01 )

™1 7= (®*+0.2/(1+Q), (2.21)

whereQ:Q(\7\7) is defined by Eq(2.6) and the factor 1(1
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FIG. 2. Crossover of domain patterns of
d(r,t) below the spinodal curve with increasing
g from 0 to 1 foru=3 and(®)=2 in shear flow
with 4=0.025.

i
P
i

butions in two-phase stat¢s7]. The last terms are the usual
viscous contributions.
The physical meaning af,,, andNy; can be seen if they

+Q) accounts for quickening of the stress relaxation undeare related to the degree of chain extension. To this end, let
large deformation$55]. Similarly, some authors assumed a ;g decomposé\}(/ as
deformation-dependent stress relaxation time in the rheologi-

cal constitutive equationgb4,5§.

Consequences of E¢2.21) are as follows(i) In the di-
lute regime we have* =0.27,. (ii) The relaxation timerin
EqQ. (2.12 in the linear-response regime becomes

7= 75(P*+0.2). (2.22

(iii) The zero-frequency linear viscosity becomes

nl=1+390%m=1+39®, (2.23

where the small number 0.2 inis omitted.(iv) Let us con-
sider a homogeneous state under shear, whgre/ vyye,
and ¢=const. In the high shear limigz> 1, by solving Eq.
(2.11) we obtain shear thinning behavior,

Npp ~ gP3(yn*s.  (2.29

Opxy ™~ g(bs( ;)’7')3/5,

Non-Newtonian behavior can arise from the factor(11/

+Q) in 7 even in homogeneous states.

W= W,€,6; + Woe,e,, (2 . 29)
wherew; andw, are the eigenvalues afW with w; =w,,
and

(2.30

are the corresponding eigenvectors wittbeing the angle
between the stretched direction and thaxis. We may as-
sume -r/2< §= /2 without loss of generality. In terms of
these quantities, we obtain

e, =(cosé,sinf), e,=(-sinH,cosbh)

Ty = gd>3(1 Wy + W)Wy —Wy)sin 20, (2.3D)
Np1 = gP3(1 +wy +wyo)(wy —wy)cos 2. (2.32)

In weak shearry<1, we have
Wy =W, ~ 71y, O-mld~ 1y, (2.33

Next we give dimensionless forms of the stress compo-

nents for general inhomogeneous cases. From Ef4

so sin =1 and cos 2~ 7y, leading to the well-known re-

and(2.16), the shear stress,, and the normal stress differ- Sultsapy~ 7y andNy~ 77y* in the Newtonian regimg54].

enceN;=o,,— 0oy, in units of oy are written as

4
Oyy= Opxy ™~ EVXCDquD + 4V, +V,), (2.295

4
Ny = Nps = (VDY D = V, 0V, @) + 8(V,0,- Vyoy),

(2.26

where o, andN,, are the network contributions,
Ty = 93 (Wi + W,y = HIW,, (2.27
Npl = gd)s(Wxx + Wyy - 1)(Wxx - Wyy) : (2.28

The second terms in Eq&2.25 and(2.26) arise from inho-

Here, for the analysis in Sec. lll, we introduce an extension
vector defined by

(2.39

whose magnitude and direction represent the degree of chain
extension and the extended direction. In our simulations, we
shall see that the magnitudeswf andw, are both consid-
erably smaller than 1 at most space points. That is, the de-
gree of extension is rather weak, but the network stress can
overwhelm the viscous stre§s 7,) because of the large fac-

tor g®3. This justifies the Gaussian form @(W) in Eq.
(2.6) in this work.

w(r,t) = (w; —wsp)ey,

IIl. NUMERICAL RESULTS

We need a numerical approach to understand the nonlin-

mogeneity in® and give rise to the surface tension contri- ear regime of shear-induced phase separation. To this end,

051503-4
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100

R(t)

R(t)

1 10 100 1000 . .
t 10 100 1000
t

FIG. 3. Time evolution of the domain siR{t) (=the inverse of
the perimeter length densjthelow the spinodal curve with increas- FIG. 4. Time evolution of the domain siZ(t) below the spin-
i_ng the shear modulus &s=0, 0.01, 0.1, and 1 in shear flow with qal curve forg=1, u=3, and(®)=2. Here y=0.0005, 0.005,
¥=0.025. The other parameters are the same as those in Fig. 2. TR&y25, and 0.05. At small shear rates, flow-induced coagulation ac-
domain growth is nearly stopped fg=1 and 0.1 within the simu-  celerates the domain growth as demonstrated by the curve of
lation time. =0.005. Fory>0.005, shear-induced domain breakup becomes

dominant and dynamical steady states are realized at smaller do-

we integrate our model equatio(®&7) and(2.11) in the pre-  main sizes.
vious section on a 256 256 lattice in two dimensions. The
mesh sizeAx is set equal td in Eq. (2.19 [S8]. We use @ ;e the initial variance is not very small and our choice
numerical scheme developed by one of the present authogs,, pe appropriatgs0].
[47,59, which uses the deformed coordinakés x—yty and
y’ =y and enables the FRTast Fourier transforinmethod to
be carried out for shear flow. Here we impose the periodic
boundary conditionf(x’,y’+L)=f(x"+L,y")=f(x",y’) for
any quantityf(x’,y’) in terms of the deformed coordinates. Even below the coexistence curve, if the shear rate is

At t=0, we assign Gaussian random compositions at eacsufficiently strong (yr>1), the composition fluctuations
lattice point, with mean valu¢®) and variance 0.1. For vary in space gradually and there is no distinct phase sepa-
t>0, we will solve the dynamic equations in the presence ofation. However, with increasing the quench depth u)
shear without the random noise terms. Here, if quenching iand/or decreasing the shear ratehe shear-induced compo-
from a one-phase state not very far above the coexistencgtion fluctuations become composed of polymer-rich and

A. Crossover from Newtonian to viscoelastic fluids below the
coexistence curve

100 T T
3 g=1
10 e 7 e DA A g
= ERAVa A FIG. 5. Time evolution of
c [ - VYV - e (oxy)(DR(t) below the spinodal
= curve at various shear rates for
A =1 andu=3. Here(d)=2 (solid
z B lines) or (®)=2.5 (dotted lines.
?/ P 0.005 At long times, the curves tend to
1k ¥T=0 . fluctuate around 15-20, confirm-
[ ing Eq.(3.2.
0.1 L L
10 100 1000
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6

T T T T T T
<0>=2 u=3 g=1 ¥=0.05 network
gradient ...................
VISCOUS —cccmccmnnn-

Shear stress contributions

2 ] ] 1 1 I ]

FIG. 6. Three contributionsyy,, (network, —4(V,®)(V,P)/ P
(gradienj, and 4V,v,+Vyv,) (viscous, to the local shear stress
oyy(x,y) in Eq(2.29 in the range 6<y<128 atx=0 for u=3,
(®)=2, and y=0.05. The network stress is overwhelming in the
polymer-rich regions, while the viscous one is relatively large in the

in the interface regions, where the three contributions are of the
same order.

solvent-rich regions with sharp interfaces. Here we show thaI =}
the domain morphology strongly depends on the sheal S %" ¥ ¢
modulusG. [

In Fig. 2 we show phase separation patterns=&00 and
2000 forg=0 (a), 0.01(b), 0.1(c), and 1(d) after quenching
att=0, whereg represents the magnitude Gfin Eq. (2.5).
The other parameters take common valuegd&s=2, u=3,
and y=0.025. The initial Deborach number before phase|
separation is given byr=y ®*=0.4. In the phase-separated |4
semidilute regions, we have B

d, = 3.70 (3.

for u=3 on the polymer-rich branch of the coexistence curve
in Fig. 1, so within the polymer-rich domains the viscosity
ratio in Eq.(2.23 is given by 1(a), 24.8(b), 239 (c), and
2384 (d). We can see gradual crossover from the patterns of L
the Newtonian fluids to those of highly asymmetric vis- 0 50 100
coelastic fluids. _ ) _

In Fig. 3, we show time evolution of the inverse of the  FIG- 7. Time evolution ofb(r,t) at y=0.05 foru=3, (®)=2,
perimeter length density fay=0, 0.01, 0.1, and 1, using the andg=1 k_)elow th(_a spl_nodal curve. The bottorr_l flg_ure is the_ pro_fnle
same conditions as in Fig. 2. It may be regarded as the typﬁ_tt:SOO in thex direction aty=128. T_he domc_";un size evolution is
cal domain sizeR(t). The domains continue to grow fgr ~ 9/Ven by the curve of the largest sheg0.05 in Fig. 4.

=0 and 0.01 within our simulation timé<10* but the lisi d fusi f the domains. For sh tes |
groth i gadually slowed dow it ncreasiggForg _ SOUSST A fuson o e s, For shear ate g
=1and0.1, we can see that the coarsening is nearly stoppes jould be a balance between the thermodynamic instability
and shear-induced domain breakup as in the Newtonian case
[2,13.

Hereafter we fixg at 1. In Fig. 4, we show time evolution The characteristic domain si&g in the steady states is of
of the domain sizdr(t) for (d)=2 andu=3 at various shear interest. In Newtonian immiscible mixtures under shear, we
rates ¥=0.0005, 0.005, 0.025, and 0.05. Remarkably, thehave Ry~ Cyen/(0yy) in the low-Reynolds-number limit
coarsening is faster foy=0.005 than fory=0.0005. This [2,13,14, whereCyg, is of the order of the surface tension
should be due to shear-induced coagulation of domains olj62]. This formula follows from a balance between the sur-
served in near-critical fluidgL3,61], where shear accelerates face energy density/Ry and the shear stress. Also in our

150 200 250

B. Domain size in two-phase flow

051503-6
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e

° ©
2

Kx

Kx

FIG. 8. Structure factos(k) for the composition patterns in Fig.
7 in the dynamical steady state.

non-Newtonian case, Fig. 5 suggests the same form,

Rp ~ Ciigl{oyy) (3.2

at variousy. The coefficientC,;s is independent ofy but
dependent oid) as 20, 13, and 11 faib)=2.5, 2, and 1.7,
respectively. Figure 5 displays the prodyet,)(1)R(t) as a
function of time after quenching a&t=1 andu=3 with (®)

=2 and(®)=2.5. The curves tend to composition-dependent
constants independently of at long times to confirm Eg.
(3.2). However, we cannot derive E.2) using the simple
arguments in this paper.

In the viscoelastic case, as in E@2.25 and (2.26), the
stress consists of the three contributions. As shown in Fig. €
at y=0.05, the network stress,,, dominates over the gradi-
ent contribution in the polymer-rich regions, whereas the net-
work, gradient, and viscous ones are of the same order in thi
interface regions. The particularly large size &, in the
polymer-rich regions suggests that these regions should be
have like percolated gels and mostly support the applied
stress. On the other hand, the viscous contribution is very

tribution in the solvent-rich regions.

PHYSICAL REVIEW EO, 051503(2004

<®>=2 u=3 g=1 7=0.005

t=10000

small in the polymer-rich regions, but is nearly the sole con- |
X

6 T T T T

FIG. 9. Time evolution of the average shear stresg)(t), the
average normal stress differengé;)(t), and the average variance
\V(8D?)(t) (dotted ling at ¥=0.05 foru=3, (P)=2, andg=1 below

the spinodal curve.

T T

<b>=2 u=3 g=1 y=0.06

5k e e -

.................... 4 (8‘1)2)
<Gy > i
<N> T
0 1 1 1 1 1 I
o] 100 200 300 400 500 600 700
t

FIG. 10. Time evolution ofd(r,t) at y=0.005 foru=3, (®)
=2, andg=1 below the spinodal curve. For this shear rate, Fig. 4
shows that the domain size increases up to the system size at

=10%

C. Fine domains at strong shear

For the largest shear raje=0.05 in Fig. 4, Fig. 7 displays
time evolution of the domains, where the polymer-rich do-
mains are percolated and the angle of extengidefined by
Egs. (2.29 and (2.30) is close tow/4. These closely re-
semble the observed microscope pictugiesthe xz plane
[29,30. The profile of® at the bottom of Fig. 7 shows that
® becomes close to 0 in the solvent-rich regions, while it is
aroundd,, in Eqg. (3.1) in the polymer-rich regions.

Figure 8 displays the structure factslk,,k,) of the com-
position fluctuations in the steady state in Fig. 7. It has sharp
double peaks along thig, axis with peak wave numbéd,
=(27/256) X 9, although we cannot see marked anisotropy
in the shapes of domains. The origin of the peaks is that the
domains are connected and hence are aligned perpendicu-

051503-7



IMAEDA, FURUKAWA, AND ONUKI PHYSICAL REVIEW E 70, 051503(2004)

12 T T T 1

<®>=2 u=3 g=1 7=0.005
0.8} <Oxp> . FIG. 11. Chaotic time evolu-

tion of the average shear stress
0alk i (oxy(t) and the average normal

stress difference(Ny)(t) at vy
oM A

=0.005 in the run which produced

. A M AL IALAA L VA o - )
v \/ v ¥k AN AR A W R Fig. 10. For this weak shear, the
V vV w W VV w VW 4 V V V deviatoric stress components ex-

04 <N:> i hibit large fluctuations andN;)
X(t) frequently takes negative
values.

08 1 1 1 1

0 2000 4000 6000 8000 10000

larly to the flow direction on the spatial scale ofrik, rotated as a whole in the early stage. Figure 11 shows that the

=28. chaotic temporal fluctuations of the stress are much more
In addition, we notice that the profile df (bottom one in  exaggerated than in Fig. 9. Unusually the normal stress fre-

Fig. 7) exhibits spikelike behavior around some extrema,quently takes negative values, while it is always positive at

whereV® varies over distances of ordei{58]. These steep y=0.05 as shown in Fig. 9 at aryb).

changes arise from convection due to the velocity fluctua- In Fig. 12, we further examine the origin of the strong

tions on such small scales in the nonlinear regime. fluctuations in this case. It displays the snapshots of the ex-
Figure 9 shows the average stress componemfs(t)  tension vector defined by Eq2.34), (oyy, (Np), and the

and (Np)(t) versus time, which exhibit pronounced over- following rotationally invariant shear gradient:

shoots and subsequent noisy behavior. Here the network con- 1 12

tributions in Eqs(2.31) and(2.32 are much larger than the S= {-2 (Vi + Vjvi)2‘| . (3.3

surface tension contributions arising from the second terms 25

in Egs.(2.25 and(2.26) by at least one order of magnitude.

This is consistent with Fig. 6. Also shown is the average /4 in most of the spatial points of the polymer-rich regions,

; > ) ; ’
variance,/(59)(t), which slowly increases over a long tran resulting in(cos 26)=—0.21 and(N;)=-0.44. Att=1500, the

sient time of order 2000. This arises from desorption of the " : . Lo .
solvent from the polymer-rich regions into the solvent re-pOIntS with§< ar/4 constitute a majority in the polymer-rich

gions, as was observed by Tanaka and co-wor@. regions, leading tdN;)=0.24. These snapshots and those of
the stress components clearly demonstrate the presence of

stress linesforming networks, which are supported by the

percolated polymer-rich regions and where the extension and
For the smaller shear rate=0.005, Fig. 10 demonstrates the stress take large values. The typical valuewgfw, on

that the domain growth continues up to the system size in ththese lines are 0.16 a+500 and 0.11 at=1500. For this

simulation time t=10%. Furthermore, comparing the two shear rate, we can see tal;) becomes negative when the

snapshots dat=300 and 500, we can see that the domains aretress lines collectively rotate and the anglexceedsr/4

Notice S=0 for pure rotation. At=500, the angl& exceeds

D. Large fluctuations at weak shear

<d>=2 u=3 g=1 ¥=0.005

FIG. 12. Patterns of the exten-
sion, the shear stress, the normal
stress difference, and the rotation-
ally invariant shear gradien8.3)
at t=500 (top) and t=1500 (bot-
tom). The corresponding composi-
tion patterns are shown in Fig. 10.
We can sesstress lineswith large
values of the extension and the de-
viatoric stress components. Tise
is large in solvent-rich slipping
regions.
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<®>=2 u=3 g=17=0.025

FIG. 13. Snapshots afv,(r ,t)/dy andd(r,t) at y=0.025 foru=3, (®)=2, andg=1 in a steady stat@eft). A bird view of dv,(r ,t)/ sy
is also shown(right). This velocity gradient takes large values where slipping is taking place in the percolated solvent-rich region.

on these lines, while foy=0.05 the stress lines are broken at be effective even for a small volume fraction of the solvent-
much faster rates an{N;) remains positive. On the other rich domains because of the strong contrast of the viscoelas-
hand,S in Fig. 12 takes large values in the solvent-rich re-tic properties in the two phases. In fact, Wolf and Se3)

gions, indicating that the polymer-rich domains are largelypresented this view to interpret their finding of a viscosity
rotated rather than being anisotropically deformed in sheadecrease which signals the onset of phase separation in shear
This tendency becomes conspicuous with decreasing shed. semidilute solutions.

See the black regions &in Fig. 12, where®d is small and

S”pping is taking place. _ , . ] E. Domain morphology and rheology for various(®)
Figure 13 shows a bird view of the velocity gradient )
dv,/ay (right) and the corresponding snapshot ®f at t Next we show that the domain morphology also strongly

=2000, where we choosg=0.025, an intermediate shear depends on the average polymer volume fractibn Figure

rate in Fig. 4. The other parameters are the same as in Figs4 displays snapshots di(r,t) at y=0.05,u=3, andg=1
4-12. We recognize that the solvent-rich regions support thi§r three compositions(®)=1.2, 1.7, 2.0, and 2.%from
velocity gradient. This means that strongly deformedleft). The time ist=1500, where steady states are almost
solvent-rich domains act as a lubricant serving to diminishreached in all these cases. The profileddh thex direction

the macroscopic stress or viscosity. This lubricant effect camt y=128 are also shown in the upper part. We can see that

u=3 g=1 7v=0.05

FIG. 14. Snapshots ofb(r,t) for (d)=1.2,
1.7, 2.0, and 2.5 in steady statesyat0.05. The
profiles of ® in the x direction aty=128 are also
shown.
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' ' ' andg=1, where the polymer-rich regions are percolated de-
spite relatively small®) [9,10. The right part is the result
under sheafy=0.005 with the other parameters being com-
mon, where the applied straifpt is 1, 2, 5, and 10 at

A e A A e e s AAAAN L =200, 400, 1000, and 2000 for the given snapshots, respec-

10 L u=3 g=1 ¥=0.05 E

A 2.5 tively. For this weak shear rate, the initial stage of phase
& \/“\/WWWW\,M separation is not much different from the case without shear
Vo MN’W'M but the coarsening is quickened as in Fig. 44dy=2. Here
1.7 the polymer-rich domains are gradually thickened but remain
highly extended in the flow direction, while the domains in
<@>=1.2 Fig. 14a) are torn into pieces because of larger shear
=0.05. Also in this case the average shear stfegs(t) and
o . . . normal stress differencéN;(t)) exhibit chaotic behavior and
"o 200 400 600 800 the producta,,)()R(t) tends to a constart-2.4). Again as
t in Fig. 11, the negativity of the normal stress difference is

FIG. 15. Time evolution ofoy)(t) at various(®). The corre- conspicuous in the early stageot shown herg

sponding composition patters are shown in Fig. 14. The overshoot
disappears at smalib). IV. SUMMARY AND CONCLUDING REMARKS

e i . : o Though performed in two dimensions, we have numeri-
® = O,=3.7 within the polymer-rich regions. With increas- cally solved the two-fluid dynamic model of sheared semidi-
ing (®), the collision freq_uency among the domains in- lute polymer solutions with theta solvent, where the chain
creases and the domain size decreases. In fact, the domaiasormations are represented by the conformation tengor
size Ry determined from the perimeter Iength is 13.75,The free-energy density depends \8 as well as the poly-
10.83, and 6.67 fof®)=1.7, 2.0, and 2.5, respectively. EVeN a1 yolume fractions as in Eq(2.3). In our simulations, the
for (®)=1.2, the polymer-rich domain collide frequently and jyitja| value of the composition is random as described at the
the domain shapes largely deviate from sphericity. In Fig. 15peginning of Sec. IlI, but the thermal Langevin noise terms
we plot time evolutions of the space-averaged shear stresg the dynamic equations are neglected ior0. The subse-
(oayy(t) for these values of®). In the dynamical steady quent heterogeneous fluctuations are produced by the nonlin-
state, we calculate the normalized shear viscosity increasgar interactions among the fluctuations and not by the ther-
Anl no=(ow)! yno—1. If it is averaged over time, it is given mal noise.
by 2, 4, 6.5, and 15 fot®)=1.2, 1.7, 2.0, and 2.5, respec- We summarize our main results.
tively. It is remarkable that the stress overshoot is nonexist- (i) With varying the parameteg representing the magni-
ent at smalk®) and gradually develops with increasitdy).  tude of the shear modes, we have examined spinodal decom-
position as in Figs. 2 and 3, which show the crossover of the
domain growth from Newtonian to viscoelastic fluids. The
domain growth is nearly stopped fg=0.1 at relatively
Finally, we examine how the spongelike domain structurdarge shear within our simulation time.
observed by Tanaka and co-workd®7] is deformed by (i) The domain growth in spinodal decomposition has
shear flow. On the left of Fig. 16 we show one example ofbeen examined a=1 with varyingy in Fig. 4. The domain
such a domain structure without shear fdr)=1.2, u=3, sizeR; in steady states becomes finer with increasyrand,

F. Deformation of spongelike domains at small shear

<®>=1.2 u=3 g=1

FIG. 16. Spongelike domain structures with-
out shear(left) and under sheay=0.005(right)
for (®)=1.2,u=3, andg=1.

1000 2000

¥=0.005
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as demonstrated in Fig. 5, it satisfies the relatidr®). Its  dependent fluctuations can be different. We note that the
theoretical derivation is not given in this paper. In Fig. 6, thetime-dependent fluctuations in these quantities become sig-
network, gradient, and viscous stress contributions are commificant when the fluctuating entities are of very large sizes.
pared, which indicates that the polymer-rich regions mostlyHere it is worth noting that more than three decades ago
support the applied stress. In Fig. 9, the varia¢é®?)(t)  Lodge [26] reported abnormal temporal fluctuations of the
continues to increase even after the saturation of the stresmrmal stress difference at a hole of 1 mm diameter from a
and the domain size, which arises from slow desorption opolymer solution contained in a cone-plate apparatus. He as-
the solvent from the polymer-rich regioi,7]. cribed its origin to growth of inhomogeneities or gel-like

(i) Figure 7 displays the composition patterns at relaparticles.
tively large sheary=0.05. Its structure factor in Fig. 8 sug- (i) Below the coexistence curve, we have shown sharp
gests that the domains are more correlated along the sheafress overshoots at relatively strong shear in Fig. 9. How-
gradient direction rather than along the flow direction. This iSgyer the stress-strain curves at relatively small shear in Fig.
consistent with the experiment$8,21,29,3 11 and those corresponding to Fig. (it shown are more

(v) At 7_0'05’.(1) f_Iuctuates_ n the region 9@_@)' complex, where the frequent negativity of the normal stress
between 0 aneb, in Fig. 7, exhibiting the spikelike behav- i qngpicuous. In the snapshots in Figs. 7, 10, and 16, the
Ir(;r. iﬁlnogl;%rvgotﬁ:lsogﬁgtrgrr:gg Lsu:{g gée Q/ﬁrggs\ﬁ S:ttuarateaomains are collectively rotated as a whole in the early stage.
I pidly R ' y Thus the first normal stress might become negaiitdeast
arger value in Fig. 9. e

after its first peak.

(v) At much smaller sheay=0.005, the domain size be- L
comes larger as in Fig. 10 and the stress fluctuations look (iif) Disappearance of the stress peaks at small average
glume fractions in Fig. 15 should also be observed.

much enlarged as in Fig. 11, as compared to the stress curv¥8'! , ; .
in Fig. 9 for ¥=0.05. For this small shear, percolated stress (V) Experiments are needed on establishment of dynami-

lines are formed in the polymer-rich regions as in Fig. 12 cal steady states with the characteristic heterogeneity length
There, we also notice that the nonrotational velocity gradien8Ven by Ed.(3.2). Strong deviations of the polymer-rich

S defined by Eq(3.3) becomes large in the solvent-rich re- domains from sphericity are also characteristic. These results
gions. Figure 13 shows that the velocity gradient/ady gained from the simulations could be compared with micro-

takes large values in the solvent-rich regions, suggesting th&COP€ observationd7,29. _ _ _
they act as a lubricant. In the future, we will perform simulations to examine

(vi) Figure 14 illustrates how the domain morphology de-heterogeneous fluctuations in various sheared complex fluids
pends on the average polymer volume fractidn. Figure Including polymer blends and wormlike micellar systems. In

15 shows that the stress-strain curves also strongly depemrticular, we will perform simulations at fixed shear stress

on (®) as well as those at fixed shear rate.
(vii) Figure 16 shows time evolution of the spongelike
patterns without shed6,7] and under weak shear._ ACKNOWLEDGMENTS
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